Белые светодиоды. Взгляд изнутри: светодиодные лампочки Источники вреда для здоровья

Введение

Эффективность

Световая эффективность, измеряемая в люменах на ватт (лм/Вт, lm/W) - величина, используемая для определения эффективности преобразования энергии (в нашем случае - электрической) в свет. Обычные лампочки накаливания работают в диапазоне 10-15 лм/Bт. Несколько лет назад стандартной величиной эффективности светодиодов было приблизительно 30 лм/Bт. Но к 2006 году эффективность светодиодов белого свечения более чем удвоилась: один из передовых производителей, компания Cree, смогла продемонстрировать на опытных образцах показатель 70 лм/Вт, что представляет 43-процентное увеличение по сравнению с максимальной светоотдачей их серийных белых светодиодов. В декабре 2006 года фирма Nichia анонсировала новые светодиоды белого свечения с достигнутой эффективностью светоотдачи 150 лм/Вт. Данные образцы продемонстрировали световой поток 9,4 лм с цветовой температурой 4600 К при силе тока 20 мА в условиях лаборатории. Заявленная эффективность приблизительно в 11,5 раз выше таковой у ламп накаливания (13 лм/Вт), в 1,7 раза выше, чем у современных люминесцентных ламп (90 лм/Вт). Более того, превышен показатель натриевых ламп высокого давления (132 люмен/ватт), являющихся лучшим по эффективности источником света среди традиционных ламп.

Преимущества

Твердотельный белый свет (SSL - Solid State Light) все еще не является хорошо известным, несмотря на разнообразие способов его получения и реализации через светодиоды. Большинство компаний и проектировщиков знакомы только с традиционным аналоговым белым освещением, без реальной оценки выгодных и полезных альтернатив, обеспечиваемых применением светодиодов. Кроме легко прогнозируемых выгод, которые могут быть получены от твердотельного светодиодного освещения (экономия электроэнергии, длительный срок службы, и т.д.), следует обратить внимание на следующие специфические признаки светодиодов как новых источников белого света:

  • малое тепловыделение и низкое питающее напряжение (гарантирует высокий уровень безопасности);
  • отсутствие стеклянной колбы (определяет очень высокую механическую прочность и надежность);
  • отсутствие разогрева или высоких пусковых напряжений при включении;
  • безынерционность включения/выключения (реакция < 100 нс);
  • не требуется преобразователь постоянного/переменного тока;
  • абсолютный контроль (регулировка яркости и цвета в полном динамическом диапазоне);
  • полный спектр излучаемого света (или, если требуется, специализированный спектр);
  • встроенное светораспределение;
  • компактность и удобство в установке;
  • отсутствие ультрафиолетового и иных вредных для здоровья излучений;
  • не применяется никаких опасных веществ, типа ртути.

Как получить белый свет с использованием светодиодов?

Черный цвет - это отсутствие всех цветов. Когда свет от всех частей цветового спектра накладывается друг на друга (то есть все цвета присутствуют), совокупная смесь кажется белой. Это так называемый полихроматический белый свет. Основными цветами, из которых можно получить все оттенки, являются красный, зеленый и синий (RGB). Вторичные цвета, также называемые дополнительными: сиреневый (смесь красного и синего); голубой (смесь зеленого и синего); и желтый (смесь красного и зеленого). Любой дополнительный цвет и противоположный основной цвет также дают в сумме белый свет (желтый и синий, голубой и красный, сиреневый и зеленый).

Существуют различные способы получения белого света от светодиодов.

Первый - смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, синие и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет. В другом, менее распространенном подходе, для получения белого света смешивается излучение светодиодов основных и вторичных цветов.

Во втором способе желтый (или зеленый плюс красный) люминофор наносится на синий светодиод, в результате два или три излучения смешиваются, образуя белый или близкий к белому свет.

Третий способ заключается в том, что на поверхность светодиода, излучающего в ультрафиолетовом диапазоне, наносятся три люминофора, излучающих, соответственно, синий, зеленый и красный свет. Это похоже на то, как светит люминесцентная лампа.

В основе четвертого способа получения белого света с помощью светодиодов, лежит использование полупроводника ZnSe. Структура представляет собой синий светодиод ZnSe, "выращенный" на ZnSe-подложке. Активная область проводника при этом излучает синий свет, а подложка - желтый.

Тип кристалла

Люминофор

Цвет излучения и возможные оттенки

Области применения

Синий и Зеленый

Белый + R, G, B и любые многоцветные комбинации

Подсветка ЖКИ, архитектура, ландшафт, табло и дисплеи

Белый + B, Y и различные многоцветные оттенки

Сине-зеленый

Красный или красно-оранжевый

Белый + B, R и различные многоцветные оттенки

Автомобильное освещение, архитектура, ландшафт

Синие 470-450 нм

Только белый

Общее освещение и подсветка

Ультра-фиолетовый

Белый или различные монохроматические цвета в зависимости от используемого фосфора

Общее освещение и подсветка

Синий / желтый

Белый + синий от эпитаксиального слоя, желтый от подложки

Общее освещение и подсветка

Какой же из способов лучше?

У каждого из них есть свои достоинства и недостатки. Технология смешения цветов в принципе позволяет не только получить белый цвет, но и перемещаться по цветовой диаграмме при изменении тока, пропускаемого через разные светодиоды. Этим процессом можно управлять вручную или посредством специальной программы. Таким же образом возможно получать различные цветовые температуры. Поэтому RGB-матрицы широко используются в светодинамических системах. Кроме того, большое количество светодиодов в матрице обеспечивает высокий суммарный световой поток и большую осевую силу света. Но световое пятно из-за аберраций оптической системы имеет неодинаковый цвет в центре и по краям, а главное, в связи с неравномерным отводом тепла с краев матрицы и из ее середины светодиоды нагреваются по-разному, и, соответственно, по-разному изменяется их цвет в процессе старения — суммарные цветовая температура и цвет "плывут" за время эксплуатации. Это неприятное явление достаточно сложно и дорого скомпенсировать.

Белые светодиоды с люминофорами (phosphor-converted LEDs) существенно дешевле, чем светодиодные RGB-матрицы (в пересчете на единицу светового потока), и позволяют получить хороший белый цвет. И для них, в принципе, не проблема попасть в точку с координатами (X=0,33, Y=0,33) на цветовой диаграмме МКО. Недостатки же таковы: во-первых, у них меньше, чем у RGB-матриц, светоотдача из-за преобразования света в слое люминофора; во-вторых, достаточно трудно точно проконтролировать равномерность нанесения люминофора в технологическом процессе (как следствие, не контролируется цветовая температура); и в-третьих - люминофор тоже стареет, причем быстрее, чем сам светодиод.

Белые светодиоды ZnSe обладают рядом преимуществ. Они работают при напряжении 2,7 В и очень устойчивы к статическим разрядам. Светодиоды ZnSe позволяют излучать свет в гораздо более широком диапазоне цветовых температур, чем устройства на основе GaN (3500-8500 К по сравнению с 6000-8500 К). Это позволяет создавать приборы с более "теплым" свечением, которое предпочитают американцы и европейцы. Есть и недостатки: хотя излучатели на основе ZnSe имеют высокий квантовый выход, они недолговечны, имеют большое электрическое сопротивление и пока не нашли коммерческого применения.


Применение

Цветовая температура

Рассмотрим спектр излучения белого светодиода с люминофором как источника полихроматического света. Белые светодиоды позволяют делать выбор в широком диапазоне цветов от "теплого" белого цвета лампы накаливания до "холодного" люминесцентного белого, в зависимости от задач применения.

Эта диаграмма показывает полный диапазон белого от его более теплой области 2800 K, до холодной синевато-белой области 9000 К. Многие оттенки белого уже определены различными источниками света, используемыми в окружающем нас пространстве: офисный, прохладный синевато-белый свет люминесцентных ламп; домашний, желтовато-белый свет ламп накаливания; индустриальный, бриллиантовый сине-белый свет ртутных ламп; желто-белый свет от уличных натриевых ламп высокого давления.

Спектр излучения светодиода определяется шириной запрещенной зоны используемого полу­проводникового материала, типом легирующих примесей, уров­нем легирования и механизмом излучательной рекомбинации . Как указывалось выше, основными материалами для изготовления эффективных светодиодов являются бинарные по­лупроводниковые соединения А III В V и их твердые растворы. На рис. 4.4 в относительных единицах представлены спектры излу­чения при комнатной температуре некоторых типичных светоди­одов, выпускаемых промышленностью.

Наибольшей эффективностью облада­ют светодиоды на основе арсенида галлия GaAs с шириной запрещенной зоны E = 1,45эВ. Следовательно, максимум спектральной характеристики излучения собственно GaAs наблюдается на длине волны λ max =1,24/1,4 = 0,9 мкм, что соответствует инфракрасной области. При легировании GaAs различными примесями (теллур, селен, литий и др.), имеющими различные глубины залегания в запрещенной зоне, светодиоды могут излучать в диапазоне λ max = 0,9…0,96 мкм. Светодиоды на GaAs имеют наиболее высокую квантовую эффективность (η внеш =10…30 % в зависимости от конструкции). Важно, что спектр излучения GaAs -светодиодов очень хорошо соответствует спектру фоточувствительности наиболее распрост­раненных Si -фотодиодов.

Светодиоды на более длинноволновую область изготавлива­ются на основе прямозонных твердых растворов Ga х 1п 1-х А s и Ga х 1п 1-х А s 1-у Р у . Для них преобладающей является квазимежзонная излучательная рекомбинация.

Важно, что максимум спек­тра излучения таких светодиодов задается составом твердого раствора. Изменяя х и у , можно изготовить светодиод на задан­ную область спектра, например, совпадающую с минимумом потерь в оптическом волокне или с максимумом спектра погло­щения какого-либо вещества, концентрацию которого предстоит контролировать. Светодиоды на область спектра λ >5 мкм могут быть изгото­влены на основе халькогенидов свинца: Р b х S п 1- x Те и ртути: Cd х Hg 1- x Те .

Фосфид галлия (G aP ) имеет ширину запрещенной зоны E = 2,25 эВ, что определяет длину волны излучения λ max =0,56 мкм. Это соответствует зеленому цвету свечения. При легировании примесями (N , O 2 , Zn ) такие светодиоды могут излучать красный, желтый, зеленый свет. Таким образом, GaP светодиоды предназначены для работы в видимой части спектра. Для GaP – η внеш = 7…0,7 %.

Светоизлучающие диоды на коротковолновую область види­мого спектра, работающие в голубом, синем и фиолетовом диа­пазонах, могут быть созданы на основе нитрида галлия GaN и гетеропереходов с использованием твердых растворов Ga х In 1- x N и Ga 1- x Al x N . Светодиоды на основе GaN дают излучение λ max =0,44 мкм, но с очень низкой эффективностью η внеш 0,5 %.

Для этой же цели применяют карбид кремния SiC . Хотя диоды на основе SiC имеют малый η внеш  0,01 %, но обладают высокой временной и температурной стабильностью. На их основе создают эталонные источники излучения.

Рис.4.4. Спектры излучения светодиодов.

Для излучающих диодов как инфракрасного, так и видимого излучения широко применяют тройные соединения, изготовленные на основе твердого раствора галлий-алюминий-мышьяк GaAlAs . Применяют также твердые растворы на основе галлий-мышьяк-фосфор GaAsP и индий-галлий-фосфор InGaP . По обобщенному показателю (Р изл , быстродействие) GaAlAs наиболее полно удовлетворяет требованиям оптоэлектроники. В этом материале часть атомов Ga в кристалле GaAs замещается атомами Al . По мере увеличения доли замещенных атомов ширина запрещенной зоны меняется от E =1,45 эВ (GaAs ) до E =2,16 эВ (чистый AlAs ). Таким образом, такие светодиоды могут излучать на длине волны max =0,6…0,9 мкм, т.е. генерировать излучение как в видимой, так и инфракрасной области спектра. Внешний квантовый выход для этого материала составляет η внеш =1,2…12 %.

Яркость высвечивания светодиода или мощность излучения практически линейно зависит от тока через диод в широком диапазоне изменения токов. Исключение составляют красные GaP - светодиоды, у которых с ростом тока наступает насыщение яркости. При постоянном токе через светодиод его яркость с ростом температуры уменьшается. Для красных GaP - светодиодов повышение температуры по сравнению с комнатной на 20 o C уменьшает их яркость примерно на 10%, а зеленых - на 6%. С ростом температуры сокращается срок службы светодиодов. Также сокращается срок службы светодиода с увеличением его тока.

С развитием светодиодной техники для нее постоянно находится все больше областей применения, она постепенно вытесняет люминесцентные и обычные лампы накаливания. Светодиоды намного практичнее в процессе эксплуатации, в 10 раз меньше потребляют электроэнергии, долговечнее, устойчивы к механическим воздействиям. Благодаря свойствам светодиодов обеспечивать излучение в определенных спектрах светового диапазона, их стали активно использовать для выращивания растений.

Интервалы спектров освещения, способствующие росту растений

Известно, что все растения развиваются благодаря процессу фотосинтеза, более глубокие изучения показали, что он активнее происходит в освещении синего и красного диапазона. Статистика различных экспериментов показывает, как некоторые растения отличаются по составу хлорофилла, от этого зависит интенсивность протекания фотосинтеза. Разные культуры растений в зависимости от этапа роста поглощают определенный участок спектра освещенности.

Зелень типа лука, петрушки, укропа активнее растет при синем спектре (длина волны 445 nm). На раннем этапе развития этот диапазон предпочитают и саженцы овощных культур. Когда наступает период цветения, завязи и созревания плодов, активно поглощается свет красного спектра в диапазоне 660 nm. Некоторым овощным культурам для благоприятного роста подходит белый свет широкого спектра.

Изучив эти свойства, можно понять, что для технологии выращивания растений в тепличных условиях при искусственном освещении легче всего адаптировать светодиоды.

Источники искусственного освещения

Ранее для растений в теплицах активно использовались белые светодиоды, люминесцентные или газоразрядные лампы широкого спектра излучения. Такая подсветка не совсем эффективна для стимулирования роста растений. Большая энергия тратится на освещение желто-зеленого диапазона, который бесполезен для роста саженцев.


На первом этапе использовались простые светодиоды красного и синего света, светодиодная лента. Но эти диоды имели довольно широкий рассеянный интервал за пределами красного и синего спектра, высокую стоимость и низкую интенсивность освещения. В процессе последовательных доработок кристаллы светодиодов стали покрывать слоем люминофора, который обладает свойствами пропускать только синие и красные лучи. Новые фитолампы излучают свет пурпурного цвета. Технологии с применением люминофора позволили добиться максимального эффекта по всем параметрам:

  • низкая себестоимость производства;
  • максимальная концентрация энергии излучения в синем и красном диапазонах;
  • максимальная интенсивность излучения;
  • экономичный режим потребления электроэнергии.

Такие светодиоды обеспечивают активный процесс фотосинтеза, стимулируя рост растений. Работы по совершенствованию параметров излучаемого спектра постоянно продолжаются, производители пытаются сделать фитофотодиоды, максимально приближая его к спектру солнечного света. Одним из современных образцов являются фитосветодиоды излучения полного спектра Bridgelux 35 мм и Epistar, первый имеет более выпуклую рассеивающую линзу.


Внешний вид Bridgelux 35 мм

Технические характеристики Bridgelux 35 мм:

  • номинальная мощность – 1 Вт;
  • напряжение от 3.0 до 3.4 В;
  • ток – 350 мА;
  • полный спектр цвета для растений 400–840 nm;
  • ресурс работы – 50 000 часов;
  • направленность рассеивания луча – 120 градусов;
  • габариты – Ø чипа с корпусом 9 мм, Ø линзы 5.6 мм, высота всей конструкции чипа 6 мм.

Особенность этих фитосветодиодов в том, что не требуется несколько чипов с разными спектрами излучения – синим или красным. В данном случае все смонтировано в одном чипе с широким спектром подсветки, где преобладают синий и красный цвета.


Сравнительный анализ спектров красного светодиода и фитофотодиода

Интервалы желтого, зеленого и других спектров значительно снижены. Это позволяет сконцентрировать энергию на излучении полезного цвета.

Основные достоинства фитосветодиодов

  • Спектр излучения охватывает полностью диапазон от 400 до 840 nm.
  • Распределение интенсивности излучения участков спектра, она максимально приближена к солнечному свету.
  • Решается проблема использования нескольких видов светодиодов с разными спектрами, когда в светильник вставляют красные и синие светодиоды.
  • Фитосветодиод эффективно стимулирует рост растений весь период развития: до цветения, во время цветения, завязи плодов и созревания. Не требуется смены источников света на различных стадиях. Фитофотодиод собирается на основе одного кристалла.

Светильники с фитосветодиодными элементами, имеющими полный спектр солнечного света, работают в 1,9 раза эффективнее, чем простые фитолампы с пиками красного и синего диапазона. И в 1,2 раза лучше, чем сборки на отдельных диодах различного спектра.


Пример конструкции для подсветки саженцев фитосветодиодами

Замечено, что под фитолампами красного и синего спектра ростки растут выше, но завязей на цветках меньше. Фитофотодиоды с полным спектром имеют менее интенсивное излучение синего диапазона по сравнению с красным. Контрасты спектра сбалансированы так, что светодиоды для растений обеспечивают не значительный рост по высоте, а максимальное количество плодов.

Превосходство фитофотодиодов с полным спектром перед другими моделями очевидно. Чтобы они еще более широко применялись, остается совершенствовать детали по увеличению интенсивности светового потока.

Светодиоды стали очень популярным источником света в последнее десятилетие. Они пришла на замену компактным люминесцентным лампам (КЛЛ) или, как их называют в народе — энергосберегайкам. Тогда и началась эра светодиодного освещение для человека.

Энергосберегающие лампы представляли относительную опасность, из-за содержащихся в их колбе паров ртути. В случае её разрушения, есть риск получить серьезный вред для вашего здоровья, вплоть до летального исхода. Мы же разберем – вредны ли светодиодные лампы для человека?

Источники вреда для здоровья

Чтоб доказать или опровергнуть вред светодиодных ламп для здоровья, определим источники ущерба для организма. Условно разделим их на 2 группы: характеристики прибора и неправильная эксплуатация.

Характеристики осветительного прибора, которые наносят вред организму:

  • Спектральные характеристики источника света;
  • излучения в инфракрасном спектре;
  • пульсации светового потока.

Вторая группа, это вред здоровью не от самого источника света, а от неправильного его использования. Давайте рассмотрим каждый фактор освещения, который влияет на ваше здоровье и определимся, вреден ли светодиодный свет для глаз.

Чем отличаются источники света

За эталон нужно принять солнечный свет, поскольку он содержит наиболее полный спектр светового излучения. Из всех искусственных осветительных приборов, наиболее приближена к солнцу лампочка накаливания. Сравните спектральные характеристики разных источников.

На графиках изображены различные спектры осветительных приборов. Лампа накаливания имеет гладкий спектр, возрастающий к области красных цветов. Спектр люминесцентных источников света довольно рваный, плюс низкий индекс цветопередачи (около 70).

Работа в помещениях с таким освещением вызывает повышенную усталость и головные боли, а также искаженное восприятие цвета.

Спектр светодиодных ламп более полный и ровный. Имеет повышенную интенсивность в области длин волн 450нм, для холодного свечения, и в области 600нм, для «тёплых» ламп соответственно. LED источники обеспечивают нормальную цветопередачу с индексом CRI более 80. Светодиодные лампы имеют крайне низкую интенсивность ультрафиолетового излучения .

Если сравнить спектр диодных и популярных люминесцентных ламп, становится понятно почему последние используются все реже. Спектр КЛЛ совершенно далеки от эталона, а их индекс цветопередачи оставляет желать лучшего.

На основании этого можно сделать вывод, что по характеристикам спектра светодиодные лампы безвредны для здоровья.

Почему лампы мерцают?

Следующий фактор, который влияет на самочувствие – это коэффициент пульсаций светового потока. Чтобы понять, что это такое и от чего он зависит нужно рассмотреть форму напряжения в электросети.

Качество света и его пульсация зависят от источника питания, от которого они работают. Источники света, которые работают от постоянного напряжения, например светодиодные лампы на 12 вольт, не мерцают. Давайте рассмотрим мерцание и вред светодиодных ламп для глаз, причины их возникновения и способы устранения.

Из розетки мы получаем переменное напряжение с действующим значением 220В и 310В амплитудным, что вы можете видеть на верхнем графике (а).

Поскольку светодиоды питаются постоянным током, а не переменным – нужно его выпрямить. В корпусе светодиодной лампы размещена электронная схема с одно- или двухполупериодным выпрямителем, после которого напряжение становится однополярным. Оно постоянное по знаку, но не по величине, т.е. пульсирующим от 0 до 310 вольт, график посередине (б).

Такие лампы пульсируют с частотой 100 герц или 100 раз в секунду, в такт с пульсациями напряжения. Вред для глаз светодиодных ламп зависит от их качества, об этом далее.

Пульсируют ли светодиоды?

В светодиодных лампах используются драйвера со стабилизацией тока по величине (дорого), или сглаживающие фильтры (дешево). Напряжение становится постоянным и стабилизированным, если использованы емкостные фильтры.

Если производитель не сэкономил на драйвере – стабильным становится значение тока. Это лучший вариант как для уменьшения пульсации, так и для срока службы LED.

На фото ниже показано как выглядят пульсации взглядом камеры. Вы можете не замечать пульсации, поскольку органы зрения стремятся адаптировать картинку для восприятия. Мозг же эти пульсации прекрасно усваивает, что и вызывает усталость и другие побочные явления.

Влияние светодиодных ламп на зрение человека может быть негативным, если они выдают пульсирующий световой поток. Санитарные нормы ограничивают глубину пульсаций для офисных помещений на значении 20%, а для мест где ведется работа вызывающая зрительное напряжение и вовсе 15%.

Лампы с большими пульсациями не стоит устанавливать дома, они годятся разве что для освещения коридора, кладовой, подъездов и хозяйственных помещений. Любые помещения, где вы не выполняете никакой зрительной работы и не находитесь долго.

Вред от светодиодных ламп низкого ценового сегмента вызван в первую очередь пульсациями. Не экономьте на освещении, LED с нормальным драйвером стоит всего на 50-100 рублей дороже, чем самые дешевые китайские аналоги.

Другие источники света и их пульсации

Лампы накаливания не мерцают потому, что работают от переменного тока и нить накала не успевает остыть когда величина напряжения пересекает нулевую отметку. Люминесцентные трубчатые лампы мерцают, если подключены по старой «дроссельной» схем. Отличить её можно по характерному гулу дросселя во время работы. На фото ниже изображены пульсации растрового светильника, как их видит камера телефона.

Современнее КЛЛ и ЛЛ не гудят и не мерцают только потому, что в их схеме используется импульсный блок питания высокой частоты. Такой источник питания называется ЭПРА (электронная пускорегулирующая аппаратура или устройство).

Вред инфракрасного спектра

Чтоб определить вредны ли светодиодные лампы для зрения, рассмотрим третий фактор вреда – инфракрасное излучение. Стоит отметить, что:

  • Во-первых, вредность ИК спектра сомнительна и не имеет основательной аргументации;
  • во-вторых, в спектре светодиодов инфракрасное излучение либо отсутствует, либо крайне мало. Убедиться можно на графиках, приведенных в начале статьи.

Вредны ли галогеновые лампы для здоровья? В источниках света, богатых инфракрасным спектром (галогенки), ответственные производители (Philips, Osram и пр.) применяют ИК-светофильтры, поэтому их вред для здоровья сведен к минимуму.

Вред синего спектра

Научно доказано, что излучение в спектре синего цвета уменьшает выработку гормона сна – мелатонина и вредит сетчатке, вызывая в ней необратимые изменения.

Кроме падения уровня мелатонина, излучение синего цвета вызывает целый ряд побочных эффектов: усталость, повышенное зрительное напряжение, заболевание глаз. Этот цвет воспринимается ярче, что часто используется в маркетинге, для привлечения нашего внимания. Большинство индикаторов на колонках, ТВ, мониторах и пр. технике выполнены в синем цвете.

Подробно об этом и насколько безопасны светодиодные лампы для глаз, пишут в сообществе .

Белые светодиоды – это синие светодиоды, покрытые специальным люминофором, который преобразует излучение в белый цвет.

Синий цвет — самый отрицательный фактор влияния светодиодных ламп на зрение. Взгляните на графики, а именно на спектр излучения светодиодов, представленный выше. Даже на Led лампе тёплого света есть пик яркости в синем спектре, а у холодной он очень высокий.

Практическая сторона проблемы

Значит вред светодиодных ламп для человека – это не миф? Не совсем так. Дело в том, что исследования проводились в условиях, когда исследуемые образцы засвечивались мощными синими светодиодами и весь их спектр был во «вредном» диапазоне.

Хоть в холодных светодиодах доля синего света и присутствует, но в солнечном свете она ничуть не меньше.

Современные люди любого возраста проводят очень много времени перед экраном компьютеров, смартфонов и планшетов. Несравнимо больший вред наносит зрению непрерывная фокусировка на расстоянии 0,3-1 метр от экрана.

Вредность синего спектра светодиодных ламп, по сравнению с вредом от экранов устройств, незначительна. Для освещения комнаты, рабочего кабинета и других помещений потоком яркого света, с низким энергопотреблением, LED подходит идеально.

Если же вы переживаете, для снижения вреда синего излучения разработаны различные варианты линз и очков для работы за компьютером. Их светофильтры отражают свет в синем диапазоне и делают цвета более тёплыми.

Нужно помнить : не светодиоды вредны для здоровья человека, а неправильный режим работы с гаджетами и плохая освещенность.

Светодиоды — польза или вред?

Понять вредны светодиодные лампы или нет, можно занимаясь организацией правильного освещения согласно . В нем регламентируется количество света, для проведения работ разной точности и размера деталей, с которыми вы оперируете во время работы.

Светодиодные источники света позволяют добиться нужной яркости на рабочем месте, с минимальными счетами за электричество. Вы сохраните зрение, вам будет легче работать, когда в комнате светло и не нужно разглядывать мелкие детали в тусклом свете. В таком случае вредность светодиодных ламп для глаз минимальна.

Высокое энергопотребление старых ламп накаливания не выгодно как в государственных масштабах (большая нагрузка на ЛЭП), так и в индивидуальном (большое потребление и высокая цена электроэнергии).

Сегодня споры о том вредны ли светодиодные лампы для зрения, остаются открытыми и нельзя дать однозначный ответ. Они относительно недавно, менее 10 лет, заполнили рынок осветительных приборов и многие относятся к ним скептически.

Влияние светодиодных ламп на здоровье человека при правильном соблюдении режима дня, сна и работы будет нулевым. Если же человек подвержен стрессам, чрезмерным нагрузкам и несерьезно относится к качеству сна — ни один источник света не сохранит его здоровье.

Польза LED в быту

Кроме бытовых применений вы можете сэкономить на искусственном освещении теплицы. Спектр позволяет вашему урожаю расти быстрее и лучше. Для этого часто применяют лампы ДНАТ, свет которых содержит различные длины волн.

Счет мощностей таких источников света ведется на сотни ватт, тогда как светодиодные фитолампы имеют мощность в десятки раз меньше и содержат только необходимые длины волн, для лучшего роста растений.

Хоть и цены с 2011 по 2017 год снизились примерно в 10 раз, все равно цена одной светодиодной лампы эквивалентом 100 Вт накаливания остаётся на уровне 10 ламп накаливания, что останавливает многих потребителей перед покупкой.

Для экологии отказ от газоразрядных светильников – безусловный плюс, об этом мы писали в статье об . Но какую опасность несут светодиодные лампы для здоровья до конца еще не известно. Ясно только то, что паров ртути можно уже не боятся.

Применение новых источников света широким кругом людей, позволяет разработчикам получать финансы для новых более совершенных проектов. А технологический прогресс всегда идёт вперед. Поэтому нужно ждать статистики, тогда станет известно насколько сильный вред от светодиодных ламп для здоровья, а на это нужно время.

LED (Lighting Emission Diode) - светодиоды с интенсивным светоизлучением хорошо всем известны. Примерно 10 лет назад (у нас в России) они произвели «тихую революцию в освещении», особенно там, где нужна мобильность, низкий удельный расход энергии, надежность и долгий срок службы. Казалось, что идеальный источник света, который жаждали получить, вело и просто туристы, а также охотники и рыболовы, спелеологи и альпинисты уже «здесь и сейчас». И достаточно протянуть руку, поднакопив чуток убитых енотов, и будет «на земли мир, в человецех благоволение». Теперь, можно сказать, что эти 10 лет не прошли даром и, светодиодная действительность оказалось интересна, разнообразна и предоставляет новые возможности, которые, ранее даже не приходили в голову.


Рис. 2 Конструкция светодиода Luxeon фирмы Lumileds lighting.* («Описание и принцип работы светодиодных светильников» Группа Энергосберегающих Компаний)


Рис. 3 Синий светодиод с монохроматическим излучением. . («LED - технология, принцип работы. Плюсы и минусы LED. » ).

ПРИНЦИП РАБОТЫ .

Светодиод, - прежде всего диод. То есть этакий хитрый камешек с p-n-переходом внутри. А другими словами, контакт двух полупроводников с разными типами проводимости. Который, при некоторых условиях, излучает свет в процессе рекомбинации (взаимного конструктивного самоубийства) электронов и дырок.
Обычно, чем больше ток через светодиод, тем больше электронов и дырок поступают в зону рекомбинации в единицу времени и на выходе излучается больше света. Но ток нельзя сильно увеличивать, - из-за внутреннего сопротивления полупроводника и p-n-перехода светодиод может перегреваться, что приводит к его ускоренному старению или выходу из строя.
Для получения значимого светового потока, создают многослойные полупроводниковые структуры - гетероструктуры. За развитие полупроводниковых гетероструктур для высокоскоростной оптоэлектроники Жорес Алферов , российский физик, получил Нобелевскую премию в 2000 году.

ДВА СЛОВА ЗА ИСТОРИЮ.

Первые полупроводниковые излучатели красного цвета для промышленного использования были получены в 1962 году. В 60-х и 70-х годах были созданы светодиоды на основе фосфида и арсенида галлия, излучающие в желто-зеленой, желтой и красной областях спектра. Их применяли в световых индикаторах и системах сигнализации. В 1993 году в компании Nichia (Япония) создали первый синий светодиод высокой яркости. Практически сразу появились светодиодные RGB устройства, поскольку синий, красный и зеленый цвета позволяли получить любой цвет, в том числе и белый. Белые люминофорные светодиоды впервые появились в 1996 г. В дальнейшем, технология быстро развивалась и к 2005 году световой выход светодиодов достиг значения более 100 лм/Вт.

БЕЛЫЙ СВЕТ.

Обычный цветной светодиод излучает в узком спектре световых волн (монохроматическое излучение). Это хорошо для устройств сигнализации. А для освещения нужны белые светодиоды и применяют разные технологии..
Например, — смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет.


Рис. 4 Спектр излучения RGB светодиода . («Википедия»)

Или, положим, используется люминофор, точнее, несколько люминофоров наносятся на светодиод и, в результате смешения цветов получается белый или близкий к белому свет. Белые светодиоды с люминофорами дешевле, чем RGB матрицы, что позволило использовать их для освещения.


Рис. 5 Спектр излучения белого светодиода с люминофором.* («Википедия»)


Рис. 6 Белый светодиод с люминофором. Схема одной из конструкций белого светодиода.

МРСВ - печатная плата с высокой тепловой проводимостью. * («Википедия»)

Вольтамперная характеристика светодиодов в прямом направлении нелинейная и ток начинает проходить, с некоторого порогового напряжения. На основных режимах излучения светодиода ток экспоненциально зависит от напряжения и незначительные изменения напряжения приводят к большим изменениям тока. А поскольку световой выход прямо пропорционален току, то и яркость светодиода оказывается нестабильной. Поэ-тому ток приходится стабилизировать. Яркость свечения светодиодов можно, например, регулировать методом широтно-импульсной модуляции (ШИМ), для чего необходимо электронное устройство, подающее на светодиод импульсные высокочастотные сигналы. В отличие от ламп накаливания цветовая температура при регулировании яркости у светодиодов изменяется очень мало.

Достоинства и недостатки люминофорных светодиодов.

В светодиоде, в отличие от лампы накаливания или люминесцентной лампы, электрический ток преобразуется непосредственно в световое излучение, и потери поэтому относительно малы..

  1. Основное преимущество белых светодиодов — высокий КПД, низкое удельное энергопотребление и высокая световая отдача - 160-170 Люмен/Ватт.
  2. Высокая надежность и длительный срок службы.
  3. Малый вес и размеры светодиодов позволяют ипользовать их в малогабаритных переносных фонарях.
  4. Отсутствие ультрафиолетового и инфракрасного излучения в спектре позволяет использовать светодиодное освещение без вредных последствий, так как ультрафиолет, особенно в присутствии озона, сильно влияет на органику, а инфракрасное излучение может привести к ожогам.
  5. Показатель удельной плотности мощности, характеризующий плотность светового потока, у стандартной люминесцентной лампы составляет 0,1-0,2 Вт/см², а у современного белого светодиода около 50 Вт/см².
  6. Работа при отрицательных температурах без снижения, а зачастую и с улучшением параметров.
  7. Светодиоды — безынерционные источники света, они не требуют времени на прогрев или выключение, как например люминесцентные лампы и количество циклов включения и выключения не оказывает влияния на их надежность.
  8. Светодиод механически прочен и исключительно надежен.
  9. Легкость регулирования яркости.
  10. Светодиод — низковольтный электроприбор, а стало быть, безопасный.
  11. Низкая пожароопасность, возможность использования в условиях взрывоопасности.
  12. Влагостойкость, стойкость к воздействию агрессивных сред.

Но есть и мелкие недостатки:

  1. Белые светодиоды в производстве дороже и сложнее ламп накаливания, хотя цена их постепенно снижается.
  2. Невысокое качество цветопередачи, которое, то же, понемногу улучшается.
  3. Мощные светодиоды требуют хорошей системы охлаждения.
  4. Быстрое ухудшение характеристик и даже выход из строя при повышенных температурах внешней среды более 60 — 80°C.
  5. Люминофоры также не любят высокой температуры, т.к. коэффициент преобразования и спектральные характеристики люминофора ухудшаются.
  6. Корпус светодиода делают из оптически прозрачной кремнийорганической пластмассы или эпоксидной смолы, которая стареет и под воздействием температуры тускнет и желтеет, поглощая часть светового потока.
  7. Современный, мощный, сверхяркий светодиод может ослепить и повредить зрение человека.
  8. Контакты подвержены коррозионным отказам. Светоотражатели (обычно из пластмассы, покрытые тонким слоем алюминия), при повышенной температуре, ухудшают свои свойства со временем, а яркость и качество излучаемого света постепенно ухудшаются.

РЕАЛЬНЫЙ СРОК СЛУЖБЫ БЕЛЫХ СВЕТОДИОДОВ.


Рис. 7 Снижение светоотдачи в процессе эксплуатации и поведение при выходе из строя ламп накаливания (INC), флуоресцентных ламп (FL), высокоинтенсивных газоразрядных ламп (HID) и LED-ламп (масштаб не соблюден, приведен вид типовых кривых).

Журнал «Время электроники», Статья «Определение срока службы светодиодов»
Автор Эрик Ричман (Eric Richman ), старший научный сотрудник, Pacific Northwest National Laboratories (PNNL )

Про100 000 часов службы светодиодов мы знаем уже много лет. А как на самом деле?
«На заре светодиодов, наиболее часто встречаемая долговечность работы составляла 100000 часов. При этом никто так и не смог объяснить, откуда взялось это магическое число. Скорее всего, оно было продиктовано рынком, а не наукой. Первым производителем светодиодов, указавшим продолжительность эксплуатации, исходя из реальных технических параметров, стала Филипс Люмиледс, со своим детищем- светодиодом Luxeon. Долговечность первых устройств Luxeon, с заданным управляющим током 350 мА и температурой перехода 90 градусов цельсия, оценивалась в 50000 часов. Это значит, что после 50000 часов эксплуатации светодиода в заданных условиях его световой поток снизится до 70% от первоначальной.»
Статья «Неизведанные воды: определение долговечности LED светильников», Журнал «Время электроники», Тимур Набиев.

В настоящее время нет никакого стандарта определяющего для светодиодов, что такое собственно «срок службы». Нет также стандартов, определяющих количественно изменение цвета светодиода со временем. Не определено, как должен работать светодиод по истечении этого срока. Некоторые ведущие компании были вынуждены самостоятельно определять критерии для срока службы. Например, было выбрано два пороговых значения светового потока: - 30% и 50%, по достижению которых светодиод считается вышедшим из строя. И зависят эти значения от восприятия человеческим глазом излучаемого света.
1) - 30% уменьшение светового потока отраженного светодиодного света. То есть, когда светодиодный фонарь освещает дорогу, окружающие предметы и т.п.
2) - 50% уменьшение светового потока, когда используется прямой свет, например в светофорах, дорожных знаках, габаритных огнях автомобилей....
А другие компании первого ряда выбирают только одно пороговое значение - 50%.
Причем, деградация светодиодов и светодиодных фонарей происходит на всех уровня, начиная с p-n перехода и заканчивая прозрачной передней пластмассовой линзой корпуса фонаря. Причем, маломощные сигнальные и индикаторные светодиоды могут служить десятилетиями. А сверхяркие современные светодиоды, которые часто работают в напряженном режиме, как по току, так и по температуре и гораздо быстрее теряют свою яркость. Таким образом, реальный срок службы качественных современных светодиодов от нескольких месяцев до пяти - шести лет в непрерывном режиме работы. Например, фирма Petzl заявляет срок службы своих светодиодов в фонарях не менее 5000 часов. Кстати, ведущие фирмы нередко заявляют меньший срок службы своих устройств, чем у «супер-пупер-бюджетных», нередко азиатских производителей, которые просто форсируют величину тока и добиваются яркого свечения. При покупке фонарей, все характеристики светодиодов соответствуют паспортным, в котором, обязательно пишут про магические 100000 часов. Но реальный срок службы таких светодиодов может не превысить 1000…1500 часов и за это время световой поток снижается минимум в 2 раза.

БАТАРЕЙКИ И АККУМУЛЯТОРЫ.

Во время работы, батареи и аккумуляторы разряжаются, питающее напряжение уменьшается, яркость светодиодов и эффективный световой поток постепенно снижается.

Кривая уменьшения яркости при естественном разряде батарей.

Яркость с электронной регулировкой. Освещенность в 0,25 люкс измеряется на расстоянии 2 метра от фонаря. (Такую освещенность дает луна во время полнолуния).

Для улучшения эффективной светоотдачи применяют электронную регулировку (стабилизацию) питающего напряжения. Сила тока контролируется специальной микросхемой, благодаря чему обеспечивается стабильная яркость в течении всего времени работы. Идея была впервые разработанна фирмой Petzl. Благодаря электронной схеме, фонари обладают стабильными характеристиками в течении всего времени работы, а затем переходят в аварийный режим (0.25 люкс). Яркость 0.25 люкс - это освещение, которое дает полная луна высоко над горизонтом в ясную погоду.

Оптимальные источники питания.

1. Для светодиодных фонарей сегодня, это конечно алкалиновые или литиевые (литий-ионные) одноразовые батареи. Литиевые батареи имеют небольшой вес, обладают большой емкостью и хорошо работают при низких температурах. Это, например, Li-MnO2 батареи CR123 или CR2 с напряжением 3В или Li-FeS2 (литий-железодисульфидные) батареи с напряжением 1,5В, но не все светодиодные фонари совместимы с литиевыми батареями - необходимо уточнять в инструкции.
2. Аккумуляторы.

Характеристики

Никель-кадмиевые

Никель-металлгидридные

Литий-
ионные

Номинальное напряжение, В

Типичная емкость, Ач

Удельная энергия:
весовая, Втч/кг
объемная, Втч/дм3

30 - 60
100 -170

40 - 80
150 -240

100 - 180
250 - 400

Максимальный постоян-ный ток разряда, до

5 (10) С

3 С

2 С

Режим заряда

Стандартный: ток 0,1 С 16 ч
Ускоренный: ток 0,3 С 3-4ч
Быстрый:
ток 1С ~1 ч

Стандартный: ток 0,1 С 16 ч
Ускоренный: ток 0,3 С 3-4ч
Быстрый:
ток 1С ~1 ч

Заряд током 0,1- 1 С
до 4,1-4,2 В, далее при постоянном напряжении

Коэффициент отдачи по емкости (Сразряд/Сзаряд)

Диапазон рабочих темпе-ратур, ºС

Саморазряд (в %):
за 1 месяц
за 12 месяцев

4 - 5
10 - 20

Ток 1С означает ток, численно равный номинальной емкости.

* Из статьи: А.А. Тагановой «ЛИТИЕВЫЕ ИСТОЧНИКИ ТОКА ДЛЯ ПОРТАТИВНОЙ ЭЛЕКТРОННОЙ АППАРАТУРЫ»

Никель-кадмиевые (NiCd) имеют небольшой вес и габариты, Плохую экологичность - кадмий страшно вредный для здоровья металл. Взрывоопасны с прочным и герметичным корпусом, имеющие микроклапаны для автоматического сброса газов, но, при этом, достаточно высокую надежность и большие токи зарядки-разрядки. Их часто применяют в бортовой аппаратуре и для устройств, потребляющих большую мощность, например, фонарей для дайвинга. Единственный вид аккумуляторов, которые могут храниться разряженными, в отличие от никель-металл-гидридных аккумуляторов (Ni-MH), которые нужно хранить полностью заряженными и от литий-ионных аккумуляторов (Li-ion), которые необходимо хранить при 40%-ом заряде от ёмкости аккумулятора
Никель-металл-гидридные (Ni-MH), были разработаны для замены никель-кадмиевых (NiCd). NiMH аккумуляторы практически избавлены от «эффекта памяти » а полная разрядка требуется не часто. Экологически безопасны. Наиболее благоприятный режим работы: заряд небольшим током, 0,1 номинальной ёмкости, время заряда — 15-16 часов (рекомендация производителя). Аккумуляторы рекомендуется хранить полностью заряженными в холодильнике, но не ниже 0 С?. Обеспечивают 40-50-процентное преимущество в удельной энергоемкости по сравнению с прежним фаворитом — NiCd. Имеют значительный потенциал для увеличения энергетической плотности. Дружественны к окружающей среде — содержат только умеренные токсины, доступные для вторичной переработки. Недорогие. Доступные в широком диапазоне размеров, параметров и эксплуатационных характеристик.

ГАБАРИТЫ И МИГАЛКИ.

12) TL-LD1000 CatEye

13) RAPID 1 (TL-LD611-F)CatEye

Европейская практика безопасности предполагает использование не только задних, но и передних габаритных фонарей.
Rapid 1 передний (белый) и задний (красный) фонари, с функцией перезарядки аккумуляторных батарей через USB порт и индикатором уровня заряда. Высокая мощность фонаря достигается применением SMD-светодиода и технологии OptiCube ™ . Мерцание CatEye Rapid 1 привлекает внимание автомобилистов и прохожих.
4 режима работы обеспечивают оптимальный выбор параметров, как ночью, так и днем. CatEye Rapid 1 поставляется с низкопрофильным кронштейном SP-12 Flextight ™, который совместим со всеми новыми RM-1.

    Время работы: 5 часов (постоянный режим)

    25 часов (быстрый и импульсный режимы)

    40 часов (мигающий режим)

    Режим памяти освещения (последний включенный вами режим)

    Аккумулятор Li-ion USB - заряжаемый

    Вес около 41 гр. с креплением и аккумулятором

    Клипса на одежду.

14) SOLAR (SL-LD210)CatEye

Велосипедист должен быть виден не только со спины, но и встречным потоком машин, не только ночью, но и днем - со включенным габаритным фонарем.

Один 5мм светодиод включается автоматически в мигающим режиме, при начале движения в темноте. Встроенная солнечная батарея производит зарядку в течение 2 часов в хороших погодных условиях и обеспечивает работу до 5 часов. Существуют модели фронтальной и задней установки, поставляется вместе с новым кронштейном Flextight ™. Вес 44 гр. вместе с кронштейном и аккумулятором

ДИНАМО - ФОНАРИ (ЖУЧКИ).

15) BLUE BIRD


3- светодиода, яркость 6 Лм, 3 режима, два постоянных (1LED и 3LED), один мигающий (3LED), работа после подзарядки: - около 40 минут (3LED); - около 90 минут (1LED), вес с креплением на руль 115г.

Впечатление:

Ну, очень удачный фонарик, ИМХО, и как габарит на велосипеде, так и для освещения в «ручном режиме» в палатке, на привале и вообще. В цивилизованных городских условиях, когда общее освещение есть и при хорошем зрении, может быть даже основным фонарем, особенно если дорога известна. Динамка крутиться легко, не сильно шумит, аккумулятор заряжается быстро. Светит хорошим белым светом. ОК!

16) Зарядное устройство Energenie EG-PC-005 для мобильных телефонов с ручным приводом и фонариком. Устанавливается на велосипеде.


Энергия вырабатывается при помощи динамо-машинки с рукояткой. Вращение рукоятки в течение трех минут заряжает мобильный телефон как минимум на 8 минут разговора. Вращение рукоятки в течение 10 минут обеспечивает яркий свет фонарика как минимум в течение 50 минут.

Технические характеристики

  • Исходящее напряжение - 4,0-5,5V
  • Исходящий ток до 400 mA
  • Встроенный Ni-MH перезаряжаемый аккумулятор 80 mAH допускает, как минимум 500 полных перезарядок
  • 2 фонарика:
    -головной: светодиодный, при максимальном заряде освещает до 10метров.
    -задний: красный светодиод.
  • Два режима: постоянное свечение (3LED), - стробоскоб (3LED)
  • Вес нетто 0,2 кг
    Комплект поставки
  • Зарядное устройство Energenie EG-PC-005 для мобильных телефонов с ручным приводом, устройством крепления на велосипеде и передним фонариком
  • задний фонарик с 1,2м кабелем
  • кабель для телефонов Nokia
  • 6 адаптеров для других телефонов

Впечатление:

Неплохой габарит, годится для освещения в палатке и для всяких хозяйственных нужд. Светодиоды не самые лучшие - с явным синеватым оттенком, что не есть гут. К сожалению, аккумулятор с некоторым трудом справляется с двойной нагрузкой (3 LED ) впереди и красный габарит сзади - и достаточно быстро «садиться». Пришлось отключить и выкинуть красный задний габарит и, ИМХО, стало получше (подольше). Рычаг динамки крутиться легко, шума не много, собственный аккумулятор заряжается без проблем. Приходилось заряжать в походных условиях и мобильник и электронную книгу. При некотором упорстве и терпении сделать это можно, но придется потрудиться. Когда фонарь работет на внешнюю нагрузку, усилие на рычаге значительно возрастет и приходиться слегка попотеть. Но общая оценка данного дивайса - полезная вещь.

17) Зарядное устройство Energenie EG-SC-001 для мобильных телефонов с аккумулятором, заряжаемым от света и от электросети и со встроенным светодиодным фонариком.

Наличие USB разъема позволяет быстро заряжать встроенный аккумулятор оснащённый защитой от перезаряда, глубокого разряда, перегрузки и короткого замыкания. В случае разряда аккумулятора срабатывает система оповещения. Имеет встроенный светодиодный фонарик.

Заряжает следующие мобильные телефоны и снабжен следующими разъемами: Nokia 6101 и 8210 серий, Samsung A288 серии, Mini USB 5pin, Sony Ericsson K750 серии, Micro-USB.

Солнечные элементы Energenie EG-SC-001 позволяет заряжать мобильные устройства в походе, разумеется в солнечную погоду.
Технические характеристики

  • исходящее напряжение - 5,4V
  • исходящий ток до 1400 mA
  • встроенный Li-ion перезаряжаемый аккумулятор 2000 mAH допускает, как минимум 500 полных перезарядок
  • встроенный USB разъем 5-6V
  • яркий светодиодный фонарик
  • размеры: 116*49*26 мм
  • вес 130 г

Комплект поставки

  • Зарядное устройство
  • AC220V-DC5V USB Адаптер питания A черный
  • 5 переходников для зарядки мобильных телефонов
  • Соединительный USB кабель.
Please enable JavaScript to view the